Methods of Evaluation of Limits

IMPORTANT

Methods of Evaluation of Limits: Overview

This topic covers concepts such as Fundamental Methods of Evaluating the Limits in the Form 0/0, Finding Limits Using Factorisation, Finding Limits Using Rationalisation, Finding Limits Using Standard Limits, Limits of a Composite Function, etc.

Important Questions on Methods of Evaluation of Limits

HARD
IMPORTANT

Let a1>a2>a3>>an>1; p1>p2>p3>>pn>0; such that p1+p2+p3++pn=1. Also Fx=p1a1x+p2a2x++pnanx1/x, then limxFx equals

MEDIUM
IMPORTANT

If limx01-cosx.cos2x.cos3xcosnxx2 has the value equal to 253, find the value of n is equal to (where nN)

HARD
IMPORTANT

The value of limx0x6000-sinx6000x2sinx6000 is

MEDIUM
IMPORTANT

The value of limx01+sinx-cosx+ln1-xx·tan2x is

MEDIUM
IMPORTANT

limx0x+ln1+x2-xx3=

HARD
IMPORTANT

limx08x81-cosx22-cosx24+cosx22cosx24

HARD
IMPORTANT

Let n be an odd integer, if   sinnθ = r=0 n b r sin r θ , for every value of   θ , then

HARD
IMPORTANT

The value of limn11n2n is

EASY
IMPORTANT

Let fx=sin1x,x0. Then fx can be continuous at x=0

EASY
IMPORTANT

limxπ/41tanx12sinx=

EASY
IMPORTANT

If f9=9 and f'9=4, then limx9fx-3x3 is equal to

MEDIUM
IMPORTANT

limx3x2+2x+1x2+x+26x+13x+2 is equal to

EASY
IMPORTANT

limx0axbxx=

EASY
IMPORTANT

limx0 ax-bxcxdx

HARD
IMPORTANT

If S be the sum of coefficients in the expansion of px+qy-rzn (where p, q, r>0 ), then the value of limnSS1n+1n, is:

EASY
IMPORTANT

Let f and g be two functions on R defined by

fx=x2+1-x

gx=sinπe1-x

Define a function h:RR by hx=maxfx,gx. Then what can be said about limxhx?

EASY
IMPORTANT

limx0logsin7x+cos7xsin3x equals

MEDIUM
IMPORTANT

If fx=sinxcosxtanxx3x2x2x11, then limx0fxx2 is

HARD
IMPORTANT

limx14x-4sinx-1=

HARD
IMPORTANT

Evaluate:limx0eax-1sinbx=